The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells
نویسندگان
چکیده
Sodium hyaluronate (HA) was associated with dopamine (DPA) and introduced as a coating for maghemite (γ-Fe(2)O(3)) nanoparticles obtained by the coprecipitation of iron(II) and iron(III) chlorides and oxidation with sodium hypochlorite. The effects of the DPA anchorage of HA on the γ-Fe(2)O(3) surface on the physicochemical properties of the resulting colloids were investigated. Nanoparticles coated at three different DPA-HA/γ-Fe(2)O(3) and DPA/HA ratios were chosen for experiments with rat bone marrow mesenchymal stem cells and human chondrocytes. The nanoparticles were internalized into rat bone marrow mesenchymal stem cells via endocytosis as confirmed by Prussian Blue staining. The efficiency of mesenchymal stem cell labeling was analyzed. From among the investigated samples, efficient cell labeling was achieved by using DPA-HA-γ-Fe(2)O(3) nanoparticles with DPA-HA/γ-Fe(2)O(3) = 0.45 (weight/ weight) and DPA/HA = 0.038 (weight/weight) ratios. The particles were used as a contrast agent in magnetic resonance imaging for the labeling and visualization of cells.
منابع مشابه
Synthesis and characterization of polysaccharide-maghemite composite nanoparticles and their antibacterial properties
The aim of this study was to obtain saccharide (dextran and sucrose)-coated maghemite nanoparticles with antibacterial activity. The polysaccharide-coated maghemite nanoparticles were synthesized by an adapted coprecipitation method. X-ray diffraction (XRD) studies demonstrate that the obtained polysaccharide-coated maghemite nanoparticles can be indexed into the spinel cubic lattice with a lat...
متن کاملImproved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles
BACKGROUND Cell tracking is a powerful tool to understand cellular migration, dynamics, homing and function of stem cell transplants. Nanoparticles represent possible stem cell tracers, but they differ in cellular uptake and side effects. Their properties can be modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine), can improve the biocompatibil...
متن کاملAntitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer
BACKGROUND Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In th...
متن کاملInfluence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells
Surface-modified maghemite (γ-Fe2O3) nanoparticles were obtained by using a conventional precipitation method and coated with D-mannose and poly(N,N-dimethylacrylamide). Both the initial and the modified particles were characterized by transmission electron microscopy and dynamic light scattering with regard to morphology, particle size and polydispersity. In vitro survival of human stem cells ...
متن کاملBiomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique
BACKGROUND In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid...
متن کامل